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Abstract

A novel regularising ensemble Kalman filter algorithm based on the Bayesian paradigm is applied to
RTM processes to estimate local permeability and porosity of fibrous reinforcements using data (pressure
and flow front positions) collected during resin injection. The algorithm allows to detect locations of
defects in the preform. It is tested in two virtual experiments, one with the simple geometry of a two-
dimensional rectangular preform and the other with a more complex 3D geometry. The first geometry
also plays the role of a digital twin for the lab experiment used for further testing. In both the virtual
and lab experiments, it is demonstrated that the considered methodology is able to successfully discover
defects and estimate local permeability and porosity and, hence can be used to improve nondestructive
examination of composites.

Keywords: Resin transfer moulding, random permeability and porosity, nondestructive examination of
composites, ensemble Kalman filter, uncertainty quantification.

1. Introduction

Resin transfer moulding (RTM) processes give a cost-effective and versatile way for manufacturing
components from composite materials. However, it is well known (see e.g. [1-6] and references therein)
that composites may have substantial variability of material properties and appearance of defects which
is not acceptable, especially for high-value components. Nondestructive examination (NDE) is vital for
ensuring that manufactured composite parts satisfy requirements imposed on their mechanical properties.
Currently, NDE is performed using measurements (e.g. X-ray or ultrasonic C-Scan) after RTM, and it
can take up to 10% to 30% [7] of the total production time for composite parts.

Here, it is suggested to use in-process information (pressure values and resin arrival at several positions
and time moments) collected during resin injection and a novel property inversion algorithm to estimate
local permeability and porosity. Based on these estimations, locations of defects in the preform are
identified which can be used for improving and accelerating NDE.

The inversion algorithm is constructed using a novel regularising ensemble Kalman filter algorithm
(REnKA) [8] and ideas of Bayesian level set methods for geometric inverse problems [9, 10]. The algorithm
is based on the recently developed infinite-dimensional Bayesian theory [11] which allows to treat inverse
problems arising in complex problems, like estimation of unknown permeability and porosity of a preform
in RTM process.

This part of the report is organised as follows. In Section 2, we describe the methodology based on the
Bayesian paradigm which we apply in Sections 3 and 4 to estimate permeability and porosity using data
observed during RTM process. In Section 3, we consider virtual experiments where data are obtained
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from simulating RTM processes using Ansys Fluent©. We consider two geometries: a flat rectangular
preform and a 3D geometry. The former plays the role of a digital twin for lab experiments which are
considered in Section 4. Conclusions and discussions are in the last section. Appendices contain additional
mathematical details supporting the description of the Bayesian inversion algorithm from Section 2.

2. Bayesian inversion algorithm

In this section, we introduce the methodology to infer the (possibly heterogeneous) porosity ¢(z) and
permeability K (x) of a fibre preform from measurements of resin pressure and moving front location
collected during the infusion process. The methodology is based on the recently developed infinite-
dimensional Bayesian theory [11] and algorithms [8, 9, 12] for data assimilation required for complex
models describing spatial physical phenomena. To provide an intuition-based explanation behind the
algorithm used here, we start with subsection 2.1 where we discuss Bayesian inversion idea on the physical
level of rigour. We present its formal mathematical formulation in Subsections 2.2-2.4.

2.1. Introductory description of the algorithm

The idea of Bayesian inversion algorithms within the context of RTM is as follows. Assume that
measurements of pressure at some locations in the preform and/or of front positions at some time moments
are available during the RTM process. A Bayesian inversion algorithm starts with a prior distribution (in
the Bayesian Statistics language: an initial guess) of local permeability and porosity. This distribution
is characterised by a set of samples (in other words, ensemble of particles) of these material properties
weighted with their probabilities. Then, based on the results of numerical RTM simulations of the
samples and measurements, the Bayesian inversion algorithm iteratively evolves these samples (updating
the distribution of local permeability and porosity) so that the samples become consistent with the
measurements (see Fig. 1). Using the obtained updated samples of the predicted distribution (in the
Bayesian statistics language: posterior distribution), we compute estimates for local permeability and
porosity together with their variances, which, in turn, provide a measure of uncertainty (error) of the
found estimates.

To summarise, the inputs for the algorithm are measurements obtained during the RTM process, the
geometry of the preform, a numerical RTM model and the prior distribution for local permeability and
porosity. These are based on available prior knowledge of permeability and porosity (e.g., their values
according to the design and expected level of variability) but otherwise they are random/unknown.
The output of the algorithm is a posterior distribution of local permeability and porosity, i.e. their
probability distribution conditioned on available observations, which can be used for finding expected
local permeability and porosity together with their confidence intervals and thus identify location of
defects in the preform.

In contrast to deterministic approaches (see e.g. [13, 14] and references therein) where only single
estimates are obtained (e.g. most likely local permeability and porosity), the Bayesian framework ap-
proximates the distribution of local permeability and porosity conditioned on the measurements. In other
words, it provides an entire set of possible local permeabilities and porosities together with their proba-
bilities of occurrence. Probabilistic knowledge of material properties enables uncertainty quantification
which is crucial for decision making within the manufacturing process. Based on the outcomes from the
Bayesian methodology, one can compute, for instance, the probability of having defects of certain size
defined by a tolerance.

In comparison with Machine Learning approaches, the Bayesian inversion paradigm used here does not
require training as it uses the physical model of the process (where the physical model can be understood
as e.g., PAM-COMPOSITES® or Ansys Fluent®© solvers for resin injection). Since it does not rely on
training, it can cope with new scenarios, not observed before in experiments or simulations.

In the next three subsections we mathematically formalise application of Bayesian inversion method-
ology to RTM.
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Figure 1: Schematic illustration of Bayesian inversion algorithms.

2.2. Parameterisation to infer defects

The selection of the prior (initial guess) in the Bayesian algorithm described above is crucial for
accurate estimation of physical properties (of the material). Choosing priors is particularly challenging
in cases where these properties display complex geometric features and/or abrupt discontinuities that
arise from, for example, the presence of material defects. To address this challenge, we apply a level-set
technique that enables to parameterise local properties with sharp discontinuities and, when combined
within the modern Bayesian methodology [9], allows to infer the geometry of regions with different
material properties. Our aim is to use such a technique to identify material defects which are often
associated with higher (including race-tracking) or lower permeability and porosity.

In Figure 2 we illustrate the idea behind the level-set parameterisation in a 2D domain. An underlying
level-set function (Figure 2, left) is introduced to parameterise, via truncation at the zero level, the
piecewise constant porosity of Figure 2 (middle). The region with high porosity (Region 1) corresponds
to positive values of the level-set function while lower porosity values (Region 2) corresponds to negative
values of the zero level-set. Heterogeneity within each region can also be incorporated by simply assigning
heterogenous functions with different mean values in each of those regions (see Figure 2 (right)). The
inference problem that we wish to solve is to find (i) the underlying level-set function £(x) that defines the
geometry of defects; (ii) functions ¢ () and x4 () that characterise porosity and permeability within the
defects, respectively; and (iii) functions ¢2(z) and ka(z) for porosity and permeability in the background
field. The set of unknowns for the inference/inverse problem is expressed in the following (function)
variable

w(x) = (p1(2), p2(), k1(2), K2 (2),§(2))- (2.1)

We propose parameterisations of ¢(z) and K (z) which enable to statistically identify material defects
associated with discontinuities and abrupt changes in these physical properties of the preform. The infer-
ence problem is posed in terms of the Bayesian calibration of a parameter-to-output map, G, that takes
those parameters which define porosity and permeability (¢(z), K(z)) and maps them into a variable, d,
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Figure 2: Level-set parametrisation of defects in a 2D preform: level-set function (left); truncated level-set function defining
regions of porosity (middle); heterogeneous field with two regions (right).

that comprises predictions of pressure and front from sensors monitored at a set of specific times during
the resin infusion (see Appendix A).

In Appendix A, we define a map F that arises from the simulation of the aforementioned predictions
of pressure and flow front for given porosity and permeability fields. With the aid of this map, the direct
(or in other words, forward) problem can be stated as follows: for given porosity ¢(z) and permeability
K(z) of the preform, compute/simulate d defined by

d=F(p,K), (2.2)

where we have dropped the dependence of ¢ and K on the independent variable x, in order to emphasise
that the parameter-to-output map F is a relation defined for functions rather than only for the values of
these functions. Within the RTM setting (see Appendix A), d consists of pressure and flow front position.

Our aim is to solve the following inverse problem: for given measurements, possibly corrupted by
noise, of d defined in (2.2), find K(z) and p(z). We assume that these measurements, denoted by d",
satisfy

d"=F(p,K)+mn, (2.3)

where 7 is a vector of random noise. We use the standard assumption that 7 follows a Gaussian distribu-
tion with zero mean and covariance I’ (we denote this by n ~ N(0,T")). Note that equation (2.3) simply
states that, in the absence of modelling errors, the empirical measurements d”, can be obtained from the
predictions of the RTM model by accounting for an additive random error in those predictions.

We introduce a parameterisation of K (z) and ¢(z) that will enable us to identify, via the solution
of the inverse problem, the location and properties of material defects. To this end, consider a level-set



parameterisation [9] of K () in terms of three unknown functions x1(z), k2(2) and £(z) as follows
K(z) = r1(x) + (ko(x) — k1 (x))La, (), (2.4)

where 1 4, (z) is the indicator function of the set A = {z € R3|¢(z) > 0}, ie.

N 1 if;L’EA§,
]lAé(x)_{ 0 ifz ¢ Ag.

Similarly, we parameterise the porosity ¢(z) in terms of functions ¢ (), wa(z) and £(z), via the following
expression:

() = p1(x) + (pa(x) — p1(x))La, (). (2.5)

In expressions (2.4)-(2.5), £(x) is the so-called level set function that allows us to parameterise the domain
of any material that has two regions, R; and Ry, with substantially different (heterogenous) permeability
and porosity, (¢1,%1) and (@9, k2), respectively. The aim of such a parameterisation is to infer possible
regions of low or high permeability that arise from the presence of material defects. It is important to
mention that the parameterisations (2.4)-(2.5) also incorporate variability of permeability and porosity
within each of those regions.

We now reformulate the inverse problem defined earlier (for K and ¢) in terms of the unknown
functions which parameterise K and ¢, and which we express in the following (function) variable:

u = (1,2, K1, K2, §). (2.6)
By noticing that the parameterisations (2.4)-(2.5) induces a map ©:
u— O(u) = (¢, K),
we can thus rewrite (2.3) in terms of the parameter-to-output map G = F o © as follows
A" = F(p, ) +n=F(Ow) +n=G(u) +1. (2.7)

Finally, we use expression (2.7) to formulate the inverse problem of finding u for given measurements d".
Once u = (p1, 2, k1, K2, &) has been found, expressions (2.4)-(2.5) can be used to find K, ¢ and, more
importantly, identify the local variability of these properties corresponding to possible material defects.
In the subsequent section we address this inverse problem in a Bayesian setting.

2.3. The Bayesian approach

The solution to the inverse problem stated earlier is not unique; a whole set of functions u =
(p1,p2, k1, K2,&) may be consistent with the observed data d” in the sense of (2.7). Therefore, a de-
terministic approach that produces one single estimate of w is not desirable, since it can overlook a
possible range of admissible solutions. We consider a probabilistic framework that allows us to compute
a distribution of those functions and thus facilitates the quantification of uncertainties associated with our
estimates. More specifically, we adopt the Bayesian framework [11] in which u(z) is a random function
with a specified prior probability distribution P(«). The prior encompasses our probabilistic knowledge
of the material properties of the preform, prior to the collection of data (i.e., before the resin injection).
For example, the prior may incorporate design values of permeability and porosity as well as regions
where defects are more likely to be present. We refer the reader to Appendix B, where we construct this
distribution and discuss algorithms to produce the corresponding samples.

In the Bayesian framework, the solution to an inverse problem is the conditional (posterior) distribu-
tion of the unknown wu(z) for given d”. The posterior, denoted by P(u|d"), can be expressed via Bayes’
rule as follows [11]:

P(d"[u)P(u)

Puld) = =5

(2.8)



where P(d"|u) is the likelihood, namely, the probability of the observed measurements d” given a particular
realisation of the unknown u(z). The term P(d7) in (2.4) denotes the probability of d”; this term is a
normalisation constant defined by

P(d") = / P(d"|u)B(du). (2.9)

From (2.7) and our assumption on the distribution of 7, it follows that d"|u ~ N(G(u),T') and thus
(2.8) becomes

Puld") = S B(w)exp [~ 5|02 — Gu))| ), (2.10)

where

Z = /]P’(u) exp [ — %||F‘1/2(d" — G(u))|[*] du. (2.11)

Given a prior, expression (2.10) provides the posterior P(u|d") up to the normalisation constant (2.11).
Due to the nonlinearity of the parameter-to-output map G which appears in (2.11), this normalisation
constant, in general, cannot be computed analytically, and so the resulting posterior distribution P(u|d")
cannot be expressed in a closed form. Sampling methods then need to be applied for the approximation
of the Bayesian posterior [12]. In the next section a regularising ensemble Kalman algorithm of [8] is
introduced to provide a sampling approximation of the posterior.

For the sake of clarity in the previous exposition, we have considered an all-at-once version of the
Bayesian framework for which all the observations collected during the resin infusion are used to infer
porosity and permeability. However, the framework can be used in a sequential fashion to enable the
online estimation of these properties [8, 12].

2.4. The reqularising ensemble Kalman algorithm

In order to compute a numerical approximation of the Bayesian posterior defined in (2.10) we use the
regularising ensemble Kalman algorithm (REnKA) recently proposed in [8]. The work [8] has shown that
REnKA provides, at a reasonable computational cost, accurate approximations of the Bayesian posterior
that arises from RTM processes. This algorithm was derived via Gaussian approximations within the
adaptive tempering Sequential Monte Carlo (SMC) scheme [12]. Although numerous sampling methods
exist for approximating the Bayesian posterior, the SMC framework of [12] is tailored to address high-
dimensional Bayesian inverse problems such as the one described in the previous subsection. Indeed, we
note that the approximation of (2.10) requires the discretisation of u(x) at every point of the computa-
tional domain (which in turn involves the discretisation of @1, @2, k1, k2 and £). Therefore, the posterior
is defined on a high dimensional space (e.g. 10°).

The adaptive tempering SMC framework of [12] consists of approximating a sequence of intermediate
distributions between prior and posterior defined by

1 [
pin() = P exp [ — 012 - G(w) ], (2.12)
where {¢,}?_ is a sequence of ¢ + 1 tempering parameters that satisfy 0 = ¢g < ¢1 < -+ < ¢4 = 1.

Note that n =0 and n = ¢ in (2.12) yield the prior (xo = P(u)) and posterior (ug = P(uld") (see (2.10)),
respectively. From definition (2.12), it follows that

attld) —oxp [ - (Lt 2012 gla| ] (213)
= exp [ = 3 @)@ - Gw)?). (2.149)
where



Starting with an initial ensemble, {ugj ) }/_1, of J samples from the prior po(u) = P(u), REnKA uses
a sample-based Gaussian approximation of each p,(u) defined in (2.12) to update, via a linearisation of
the recursive formula in (2.13), the ensemble of particles that approximate distribution p,+1(u). Upon
convergence, REnKA produces an ensemble {u(J )} —, that provides an approximation to the posterior
(2.10) which can, in turn, be used to compute btdtlbtl(,dl quantities of the porosity and permeability (see
details below). The parameter «, in (2.15) controls the number of intermediate distributions f,, needed
for stability and accuracy of the algorithm. We refer the reader to [8] for further details on selection
strategies for this parameter.

REnKA is displayed in Algorithm 1. We note that it can be used in a black-box fashion. The total
cost of REnKA is given by ¢ = J x ¢ RTM simulations, where, as before, ¢ is the total number of iterations
(i.e. the number of intermediate distributions p,). Our experiments suggest that an ensemble of size
J = 100 is sufficient to provide accurate approximations of the posterior usually within ¢ = 10 iterations.
Therefore, the total cost is approximately 10° number of simulation runs. We note that REnKA scales
with respect to the number of particles J, and so its computational execution time can be substantially
reduced via the use of high-performance or parallel computing.

The ensemble of particles obtained via REnKA (Algorithm 1) can be used to compute an approx-
imation to the posterior expectations of u. For example, given the final ensemble (upon convergence)

{u(j)}le = {(4,0(1]>, gpgj), fi(f), (j),é(j))}jzl, we can compute the posterior mean %(z) defined by

J
U(x) = (7y(x), Pa(2), R (1), Fa () _%Z D (@), 05 (), 67 (), k9 (2), 6D (x)).  (2.16)

A posterior estimator of porosity and permeability can be computed via expressions (2.4)-(2.5) applied
to w, i.e.

)+ @a(2) = 91 (2))Lag(2), (2.17)

¢'@) = Bl
Ri(2) + (Re(z) — Fa () La(a). (2.18)

K*(z) =

We can additionally compute the posterior distributions of K and ¢ from the ensemble of {u )}Jle
More specifically, we use (2.4) to compute the posterior ensemble of permeability

K@) = w@)+ (@) =6 @)la, (@), G=1,....0 (2.19)

The posterior (ensemble) mean and variance of permeability can be computed via
12
=5 Z K9 (z o2 (z Z(K(J) —K(z))>. (2.20)

From (2.5), we can compute the ensemble of posterior porosity {¢?)(®)} ]le and, with analogous formulas
to those in (2.20), we can compute the corresponding posterior mean and variance p(z) and 035(1‘),
respectively. We emphasise, by means of the dependence on 2 in (2.20), that statistical measures of
the unknown properties are, in general, functions of the spatial domain of the preform. Incorporating
variability in those properties is crucial to identify locations of material defects.

Finally, we use the posterior ensemble of porosity and permeability { K )(33)}3]=1 and {pV )(7‘)}3]:1 to
approximate the posterior distribution of measurement predictions. This is conducted via the map F
discussed earlier which, in turn, involves the simulation of an ensemble of model predictions

dD = F(KWD o0y =1, (2.21)

The distribution of measurement model predictions characterised by the ensemble {d/ )}jzl is used to
assess whether the posterior distribution of material properties results in predictions which are consistent
with the data.



Algorithm 1 Regularising ensemble Kalman Algorithm

Let {uéj )}}]=1 be the initial ensemble of J elements. Let d”7 € RM the vector of M measurements. Let

I" be the measurements’ error covariance.

Set to =0
while ¢, < 1 do
(1) Prediction step. Evaluate

GY) = g(ul), je{l,...,N.}
and define G, = & ijl G

(2) Compute regularisation parameter «,,:.

J
1
o = —;Z 2@ = g

if to+ 57 > 1 then Set ay = 1=, tny1 = 1.
else Set o, = o, thy1 =t + i

end if

(3)Analysis step. Define C*9, C99 by

cge () ——Z(gw DG )T
J
Cug Z ) _ (.7'))_§n)T.

Update each ensemble member:

ul) = uf) + CU(CY0 + D) My~ 69 + ), jefl...,

where 17(]) ~ N(0,T).
n+1l—=mn
end while

(2.22)

(2.23)

(2.24)

J} (2.25)




3. Validation in virtual experiments

In this section, we test Algorithm 1 in virtual experiments, i.e., using computer generated data. To
this end, the ANSYS Fluent® solver is used to model a real RTM process. A number of pressure and
resin arrival virtual sensors are programmed using a user-defined-function (UDF) written in C for ANSYS
Fluent®. During the run of the ANSYS Fluent®© solver, data from the sensors are collected, which are
then used as input for the inversion algorithm. The purpose of the virtual experiments is to confirm
whether REnKA can detect locations of defects and give reasonable estimates for local permeability
and porosity. Two examples of preforms are considered. The first example (subsection 3.1) is a flat
rectangular preform. Its geometry is identical to the one used in the lab experiments (Section 4) and
hence it plays the role of a digital twin here. The second example (subsection 3.2) has a more complex
3D geometry of an abstracted transmission tunnel; it is more realistic from the practical point of view
and more challenging for Bayesian inversion algorithms.

3.1. Rectangular part

Flow through a rectangular porous preform inside an RTM tool was simulated using a transient two-
phase flow model within ANSYS Fluent®©. It was assumed that the permeability of the reinforcement
does not change with time (no compaction or decompaction, no change of properties with saturation)
but can change from point to point. Viscosity of the fluid remained constant (i.e., the process is assumed
to be isothermal with no resin cure present) and was set to 0.1 Pa-s. No-slip boundary conditions were
imposed at the walls of the cavity. A constant pressure of 0.4 bar is set at the inlets and 0 bar at the
outlet. Finally, the model was assumed to neglect any through-thickness effects which made it possible
to use a 2D implementation of the numerical algorithm. The permeability is assumed to stay constant
within each element of the mesh used in simulations but can vary between the elements, which was
implemented via a UDF extension. A schematic drawing of a rectangular mould is shown in Fig. 3 (left).
Six pressure sensors and seven equally spaced linear flow sensors are placed within the tool.

Mesh convergence studies were performed, and the mesh sufficient to obtain accurate results is shown
in Fig. 3 (right). The ANSYS Fluent®© solver settings were: pressure-based solver; implicit VOF formu-
lation; SIMPLE algorithm for pressure-velocity coupling; spatial discretisation of gradient using Green-
Gauss Node Based gradient method; spatial discretisation of pressure and momentum using PRESTO!
and third-order MUSCL methods, discretisation of volume fraction using modified HRIC method. Under-
relaxation and convergence settings were kept to their default values.

The aim of this experiment is to identify material defects of a rectangular part. We assume that
the reinforcement contains two circular defects of radius » = 0.025 m and centres with coordinates
(0.017 m,0.083 m) and (0.03 m,0.18 m), respectively. We construct the true porosity ¢'(z) and perme-
ability Kf(z) (i.e. the ones we wish to infer) so that these properties have lower permeability and porosity
in the defects than those in the background (region without defects). In order to account for real-case
scenarios where porosity and permeability may display variability (within the defects and the background
regions), we assume the porosity and permeability in both defects and background are Gaussian random
fields (see Appendix B). The plots of ¢f(z) and KT(z) are displayed in the left and left-middle panels of
Fig. 4.

We use pf(z) and KT(z) to generate virtual data (measurements of pressure and flow front position)
which we subsequently use via REnKA to infer those material properties. To this end, we run the RTM
simulator (see Appendix A) with permeability and porosity specified by Kt and ¢f to produce noise-free
predictions of pressure and front location d. These predictions are then superimposed with a vector
Gaussian random noise, i.e. we compute d" = d + n with  ~ N(0,T"). We assume the error covariance
matrix I' discussed in the previous section is diagonal with elements equal to the variance of each of the
measurements. The standard deviation for pressure measurement errors is 200 Pa. Measurement errors
for front location are 2% of the size of the (noise-free) measurements.

We use virtual measurements d” to infer o' (z) and KT (z) within the Bayesian approach discussed in
subsection 2.3. We select a prior for u(z) = (¢1(z), p2(2), k1(x), K2(x),€(x)) as described in Appendix
B. We generate an initial ensemble of J = 120 particles and compute the corresponding ensemble of

10
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Figure 3: Geometry of the rectangular tool and the corresponding mesh.

permeability and porosity (e.g. via using the initial ensemble in formulas analogous to (2.20)). Some
samples of the prior ensembles for porosity and permeability are displayed in Fig. 5 (left). The prior mean
and variance of these ensembles are displayed in Fig. 6 (top). With this selection of priors, we account for
substantial variability in the underlying parameter v which is, in turn, reflected in variability in porosity
and permeability. Moreover, from Fig. 6 (top) we observe that the mean and variance do not assume
the presence of defects. Our prior assumptions on permeability and porosity also result in substantial
variability in the uncertainty in the prior predictions of pressure and flow front locations. Some of these
measurements are displayed in the top panels of Fig. 7 (pressure) and Fig. 8 (flow front location).

We now report the results obtained from applying REnKA with the aforementioned selection of a
prior ensemble. In Fig. 4 we display the estimate of porosity (middle-right panel) and permeability (right
panel) obtained via (2.4)-(2.5), upon convergence of REnKA (after 6 iterations). We can clearly see
that the location of the circular defects has been successfully identified. Further validations are provided
by the posterior mean and variance of the ensembles of porosity and permeability displayed in Fig. 6
(bottom). While the posterior mean enable us to successfully identify the preform defects, we note that
there is relatively large uncertainty (variance) around the interface between background and defects.
The variability in the estimates produce by REnKA can also be observed from Fig. 5 (right) where we
display some members of the posterior ensemble of porosity (top) and permeability (bottom). Posterior
prediction of pressure and front location (at some sensors) are shown in the bottom panels of Fig. 7
(pressure) and Fig. 8 (flow front location). We note that the reduction in the uncertainty in porosity and
permeability yields a substantial reduction in the predictions of pressure and front which are, in turn,
consistent with the virtual data.

11
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Figure 4: Virtual experiment (rectangular part). Left: True porosity. Left-middle: True permeability. Middle-right:
Inferred porosity (via eq. (2.4)). Right: Inferred permeability (via eq. (2.5)).
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Figure 5: Virtual experiment (rectangular part). Left: Samples from the prior of porosity (top) and permeability (bottom).
Right: Samples from the posterior of porosity (top) and permeability (bottom).
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Figure 6: Virtual experiment (rectangular part). Top: Prior mean and variance of porosity and permeability. Bottom:
Posterior mean and variance of porosity and permeability.
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Figure 7: Virtual experiment (rectangular part). Top: Prior predictions of pressure measurements (blue line) and virtual
data (red line). Top: Posterior predictions of pressure measurements (blue line) and virtual data (red line).
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Figure 8: Virtual experiment (rectangular part). Top: Prior predictions of flow front measurements (blue line) and virtual
data (red line). Top: Posterior predictions of flow front measurements (blue line) and virtual data (red line).

3.2. Tunnel part

An adapted geometry of an automotive component, namely transmission tunnel, was used to validate
REnKA on a more complex 3D problem. The tunnel, shown in Fig. 9(left), has overall dimensions of
0.70 mx0.35 m x0.15 m and fitted with 267 virtual pressure sensors located approximately on a grid
of 0.15 mx0.15 mx0.10 m. Resin flow through the preform is simulated using transient two-phase flow
in ANSYS Fluent® under the same assumptions and solver settings as described in subsection 3.1. The
pressure at the inlet, located at the narrow end of the tunnel, is set to 1 bar. The pressure at the outlet,
located at the wide end of the tunnel, is set to 0 bar. The fluid viscosity is set to 0.1Pa-s.

For validation, we construct the true porosity o' (z), which is shown in Fig. 9(right), with background
porosity equal to 0.5 and defects having higher porosity of 0.7. The true permeability KT(x) is then
constructed assuming that dependence of permeability on porosity can be expressed as

K(z) = a(l - ¢(x))"

with our choices of @ = 10719 m? and b = —1.4.

(3.1)

Figure 9: Overall view of the tunnel geometry (left); Porosity defects (in red) in the tunnel preform (right).

Virtual measurements d” are used to infer f(z) and K¥(x) within the Bayesian approach discussed
in subsection 2.3. The virtual measurements of pressure are superimposed with 1% noise. The parame-
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terisation in this case was via permeability, i.e. K(z) was written as before (see (2.4):
K(z) = r1(z) + (ka(x) — k1 (2))La (2) (3.2)

then %1 and ko can be identified. Having K (z), the inferred porosity is computed according to (3.1).

AN S
IS

Figure 10: Samples from the prior porosity ensemble (top); Samples from the posterior porosity ensemble (bottom).
Red=porosity of 0.7, blue=porosity of 0.5.

True porosity Inferred porosity

ID.?

Porosity

0.5

Figure 11: True and inferred porosities.

For simplicity, it is assumed in this experiment that porosity is constant and known for both the
defects and background. Therefore, the main objective of this virtual experiment is to identify defect
locations only (i.e., underlying level-set function £(z) in a 3D domain with complex geometry). The
initial ensemble of J = 100 particles is generated and used to compute the corresponding ensembles of
permeability and porosity. Some samples of the prior ensembles for porosity are shown in Fig. 10(top).
This choice of prior does not assume any knowledge of position of defects and has a substantial variability.

Using the described setting, REnKA converged after 7 iterations and produced a posterior ensemble
of porosity shown in Fig. 10(bottom). The mean is computed from this ensemble to identify locations of
the defects. It is shown in Fig. 11 along with the true porosity ¢'(z). It can be seen that the inferred
porosity captures all three defects in the preform.
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Future virtual experiments with the tunnel will include inferring not only locations of defects but also
heterogeneous values of porosity and permeability inside the defects and in the background similar to
how it is done in subsection 3.1 for the simple geometry.

4. Validation in a lab experiment

A rectangular mould with three inlet gates and one outlet, with identical configuration to that used
in subsection 3.1, was used in the experiments. The mould consists of a steel bottom, a spacer frame of
2 mm thickness and a transparent top. Each of the inlets is connected to a pressure tank fitted with an
electro-pneumatic pressure regulator. Six pressure transducers, mounted in the bottom of the mould, are
connected to data acquisition equipment to collect the measurements. A digital video camera was used
to record the mould filling process and obtain flow front positions.

Figure 12: The lab experiment setting.

Figure 13: Defects in the preform.

Continuous glass fibre random mat, Unifilo©, was used for the experiments. The areal weight of the
reinforcement was measured to be 259 g/m? with a standard deviation of 15 g/m?. The preforms used
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Figure 14: Lab experiment (rectangular part). Left: Inferred porosity (via eq. (2.4)). Right: Inferred permeability (via eq.
(2.5)).
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Figure 15: Lab experiment (rectangular part). Posterior mean and variance of porosity and permeability.

17



x10* sensor: 1 x10* sensor: 3 x10* sensor: 6

35 3.5 3.5
predictions predictions
3 3 measurements 3 measurements
= 25 = 2.5 = 25
= a =
e 2 g 2 e 2
5 5 5
A 15 a15 ? 15
<4 o <4
S S S 1
05 predictions 0.5 0.5
measurements
0 ol ol AAN . A
0 50 100 150 0 50 100 150 0 50 100 150
time [sec] time [sec] time [sec]
sensor: 1 sensor: 3 sensor: 6
0.25 0.25 0.25
5 o2 5 o2 5 o2
c c c
=} o =}
= 0.15 = 015 = 0.15
o o o
° ° °
= o0t = 01 = o1
= S 2
0.05 predictions 0.05 predictions 0.05 predictions
measurements measurements measurements
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150
time [sec] time [sec] time [sec]

Figure 16: Lab experiment (rectangular part). Posterior predictions (blue line) of pressure (top) and front location; real
data are displayed in red line.

in experiments were consisting of 7 layers of the reinforcement compacted to a porosity of approximately
0.71. Defects were created by placing circular patches of additional 4 layers of the reinforcement in the
middle of the preform (see Fig. 13) at the positions and of the size described in subsection 3.1. The
injection fluid was engine oil at a constant temperature of 19.5°C with a viscosity of 0.106 Pa-s. The
injection pressure at all three gates was set to 0.4 bar.

We apply REnKA with the experimental data collected as described earlier. We initialised the algo-
rithm with the same initial ensemble as in subsection 3.1. Based on regression analysis on the lab data,
we determine that measurements errors in pressure data have a standard deviation of approximately 300
Pa. Errors in flow front positions are estimated to be approximately 5%. We use this information to
construct the error covariance matrix I'.

REnKA converges after 10 iterations. The posterior ensemble of unknown parameters is used in
(2.4)-(2.5) to compute the inferred porosity and permeability. These are displayed in Fig. 14. Posterior
mean and variances are shown in Fig. 15. We note that porosity and permeability indicate the presence
of defects that were engineered in the lab experiment. We observe that there is unintended variability
in porosity and permeability in the background. This variability represents inherent variability of the
reinforcement used in the experiments. It was estimated experimentally that the variability of porosity
can be up to 10%. Nevertheless, from Fig. 16 we note that the posterior predictions of pressure and flow
front show that an excellent fit to the data has been achieved.

5. Conclusions

We applied a novel Bayesian inversion algorithm to RTM processes. In virtual and lab experiments,
we demonstrated that the algorithm can successfully identify material defects via the estimation of regions
of high contrast in porosity and permeability. The algorithm also provides a measure of uncertainty (via
variance) which is relatively large at the interface between background and defects. For real experiments,
we showed that the algorithm can recover defects albeit with a lower degree of accuracy compared to
virtual experiments. Possible reasons are (i) experimental data is affected by larger errors which are
detrimental to the algorithm, (ii) modelling errors which are larger than measurement errors produce
bias estimates. This is the first step in using in-process data and the Bayesian inversion methodology to
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improve and speed up NDE of composites parts, which in turn will deliver more robust, more reliable
and cheaper manufacturing of composites.

Future work will include incorporation of better prior models and /or infer the prior within the Bayesian
inversion algorithm [10, 16]. Further testing is required in both virtual and lab experimental settings.
In the former, more testing is needed for complex geometry allowing for permeability and porosity to be
heterogeneous inside and outside defects as it was done here in the case of simple flat geometry and also
to have defects of significantly different shapes. Lab experiments with more complex geometry need to
be conducted. Furthermore, the success of in-process data collection and hence of estimating properties
of produced composites parts depends on quality and resolution of pressure and/or arrival sensors which
should be developed further and become cheaper for the digital revolution in composites manufacturing
to succeed.
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Appendix A. Resin Infusion Model

We now describe the forward model (see further details in [6, 8, 17]). Let D* ¢ R? d € {1,2}, be an
open domain representing a physical domain of a porous medium with the permeability () and porosity
. The boundary of the domain D* is 0D* = 0D; U 0Dy U 0Dg, where 0Dy is the inlet, 0Dy is the
perfectly sealed boundary, and dDg is the outlet. The domain D* is initially filled with air at a pressure
po. This medium is infused with a fluid (resin) with viscosity p through an inlet boundary dD; at a
pressure p; and moves through D* occupying a time-dependent domain D(t) C D*, which is bounded by
the moving boundary Y(¢) and the appropriate parts of dD.

The forward problem for the pressure of resin p(¢,z) consists of the conservation of mass

V.-v=0, zeD({),t>0, (A.1)
where the flux v(z,t) is given by Darcy’s law

v(z,t) = —%Vp(x, t) (A.2)

with the following initial and boundary conditions

p(z,t) = pr, v €0Dy, t >0, (A.3)
Vp(z,t) -n(z) = 0, 2 € 0Dy, t >0, (A1)
Vz,t) = _uﬁgo((xz) Vp(z,t) -n(z,t), e T(), t>0, (A.5)

p(x,t) = po, v €Y(), t>0, (A.6)

p(z,t) = po,x € dDp, t >0, (A7)

p(x,0) = po, v € D*, (A.8)

T(0) = 9dD;. (A.9)

Here V(z,t) is the velocity of the point = on the moving boundary Y(¢) in the normal direction at x,
n(z) and n(z,t) are the unit outer normals to the corresponding boundaries.

We consider N, pressure sensors at locations denoted by w! = (2%, y?), i = 1,..., N,, and N linear
sensors with coordinates defined via the sets F; = {(z,y) € D|z = w{,y € [0,L]},i=1,...,Ny. Let
yf (t) be such that

(el ol () = 70 T(0).

In other words, ny (t) is the y-coordinate of the position of the flow front measured at the ith linear
sensor. We are interested in monitoring pressure at sensors locations as well as the flow front location
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(measured at linear sensors) at a collection of N; observation times {t,, }N* . At each observation time
tm, we combine all measurements of pressure and flow front in the following variable

d= ({p(w? t)} iy, oo Ap(? ) b Lyl ()Y o ] () ).

We note that for specified u, pp and py, the resin injection model (A.1)-(A.9), together with measurement
predictions defined in (A.10) induced a map

(A.10)

d=F(k,¢),

that maps porosity and permeability into model predictions of pressure and flow front at sensor locations
and specified observation times during the simulation of resin injection.

Appendix B. The Prior

As we discussed in subsection 2.3, the Bayesian approach enables us to incorporate prior knowledge of
the unknown parameters u(z) = (p1(x), p2(z), k1 (), k2 (z), &(x)) that we wish to infer. In this subsection
we discuss our selection of the prior distribution for these variables. We recall that samples from these
priors are needed in order to generate the initial ensemble that we must specify to initialise Algorithm 1.

For simplicity, let us first assume that, under the prior, the unknown parameters @1, o, K1, Ko, & are
independent random functions and so the joint prior can be written as

P(u) = P(p1, 2, k1, £2,8) = P(p1)P(p2)P(k1)P(r2)P(E),

where P(¢1), P(p2), P(k1), P(k2) and P(£) are the priors of ¢1, @2, K1, K2, and &, respectively. In
a practical context, our prior knowledge (e.g. from previous experiments) of these parameters could
suggest correlations between these parameters; these correlations can be incorporated within the proposed
framework.

(B.1)

1 2 K1 K2 3
v 1.85 1.85 1.85 1.85 2.5
Ifem] | 1.183x 1072 | 1.183 x 1072 | 1.183 x 1072 | 1.183 x 1072 | 2.2 x 1072
o2 0.05 0.05 1.6 x 10721 | 1.6 x 107 1
mean* 0.55 0.71 2 x 10710 6 x 10710

Table B.1: Prior parameters. *prior means were assumed constant.

In order to define priors for the functions 1, @2, K1, k2, and &, we propose the use of Gaussian
random fields [18]. Our aim is to use Gaussian priors to characterise, via a wide class of functions, the
spatial variability in the material properties. We assume that, under the prior, each of the functions
V1, P2, K1, k2, and € are stationary Gaussian random functions/fields (GRF) with a prescribed mean
covariance operator induced by the Whittle-Mattern covariance function given by [15]:

vt [ — Y |z — ¥
_ 2 ! !
fo‘,l/,l(xﬂy) =0 F(l/) ( l KD l bl

where v > 0 is a parameter that controls the regularity /smoothness of the samples, [ is the characteristic
length scale, o2 is the variance, I' is the gamma function, and K, is the modified Bessel function of the
second kind of order v. In Table B.1. we display the selection of mean and parameters in the Whittle-
Mattern covariance function (B.2) for each of the functions ¢1, s, k1, ko and . It is important to
mention that the selection of the prior variance o for each of the parameters @1, @2, K1, k2 has been
made so that the resulting samples are positive with very high probability. We reiterate that the prior
means reflect our prior knowledge of these quantities according to the design. The generation of a random
functions from such a distribution can be achieved by means of the Karhunen-Loeve (KL) expansion [18].

(B.2)
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Part II: Algorithms for active control of resin infusion in RTM process
with uncertainties
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Abstract

An active control system (ACS) aimed at reducing deviations of a real RTM process influenced by random
disturbances from the expected (reference) process according to a design is developed. Using a very fast
pseudo-1D Bayesian inverse algorithm, the ACS estimates permeability and porosity based on which it
then computes new pressure values on the inlets required to have the flow front position at the next
observation time to match the reference position of the front within the tolerance level. The ACS is
tested in both virtual and lab experiments confirming its feasibility.

Keywords: Resin transfer moulding, random permeability and porosity, Bayesian inverse algorithms,
stochastic control, uncertainty quantification.

1. Introduction

Resin Transfer Moulding (RTM) process is an attractive way of producing composite materials due
to its versatility. But the use of RTM (especially, in the case of aerospace application which have very
low tolerance to defects in produced parts to ensure their safety of use) is hindered by its substantial
irreducible uncertainties and variabilities [1-3]. The variability can lead to incomplete mouldings and to
not having a repeatable mould filling process with minimum deviations from the design. Such deviations
typically cause dry spots and/or high micro-void content. Here we propose an active control system
(ACS) aimed at reducing deviations from the designed process.

A number of attempts have been made to develop control systems, see e.g. [4-6] and references therein.
In [4] a control system exploits a surrogate model such as artificial neural network. Surrogate models
are not physics-based and their performance degrades when they encounters cases which are significantly
different from those used for the model training. They require extensive (usually highly computationally
demanding) training before they can be used, and this training needs to be repeated for any new design
of the process. In contrast, the ACS presented in this paper uses a physics-based resin injection model
which can work online for a real mould filling process without any prior training and it can deal with
any new scenario automatically. In comparison with [5, 6], the presented ACS exploits an efficient, novel
Bayesian inversion (BI) algorithm (REnKA from [7], see also [8]) for estimation of local permeability and
porosity to have more accurate control.

In this paper, we test the feasibility of such an ACS in terms of computational time required for the
ACS algorithm as well as its ability to reduce the error compared to an uncontrolled RTM process. These
will be verified in virtual and physical experiments.

Email addresses: Mikhail.Matveev@nottingham.ac.uk (M.Y. Matveev), Andreas.Endruweit@nottingham.ac.uk (A.
Endruweit), Andrew.Long@nottingham.ac.uk (A.C. Long), Marco.Iglesias@nottingham.ac.uk (M.A. Iglesias),
Michael.Tretyakov@nottingham.ac.uk (M.V. Tretyakov)
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This second part of the report is organised as follows. The ASC is described in Section 2 with
technical details given in Appendices. Results for virtual experiments are presented in Section 3. The
test conducted in the lab is considered in Section 4. The last section contains discussions and conclusions.

2. Active control system (ACS)

The ACS is aimed at controlling flow patterns during impregnation of a fibrous preform with a resin.
It requires that a resin injection simulation for the considered part with its designed parameters was
performed on a space-time grid prior to the use of ACS, and that the result of this simulation is recorded
in terms of positions of the flow front on the time grid. This result is called flow according to the design’
throughout the text. The objective of ACS is to minimise deviation of the flow front positions under real
conditions from the front positions according to the design. It is assumed that deviations from the design
occur because of local variability of permability and porosity caused by heterogeneity of preforms, while
other variabilities such as resin viscosity or fluctuations of injection pressure at the inlets are neglected.

The ASC has the following schematic structure. For a selected distance (e.g. maximum deviation)
a tolerance level for deviation of the flow front positions under real conditions from the front positions
according to the design is selected. On a pre-determined time grid and at every time step the algorithm
does the following.

1. Compute the distance between the current flow front position and the front position according to
the design as it should be at this time.

2. If the distance is smaller than the set tolerance, do not perform any further actions.

3. If the distance is larger than the tolerance then

(a) Estimate permeability and porosity using a BI algorithm given the data from pressure and
flow front sensors collected from the start of resin injection until the current time.

(b) Compute the pressure values at each of the injection gates using the estimated local perme-
ability and porosity so that at the next time point of the grid the distance between the current
flow front position and the front position according to the design is minimised.

(c) Change pressure on the inlets according to the result of b) and Exit this algorithm.

The steps 3a and 3b rely on a mathematical model of resin infusion process. In this study, a simplified
model in the form of pseudo-1D flow is used. The problem formulation, its solution and the approach
for finding new pressure on an inlet provided that permeability and porosity have been estimated are
given in Appendix A. REnKA from [7] (see also [8]) is used as the BI algorithm required in 3a. It is
expected that the use of the pseudo-1D flow together with independent evaluation of pressure on each
gate in the ACS can be adequate for an anisotropic material with permeability in the direction of the
flow significantly (by a factor of 10 or more) dominating the transverse permeability. For the case of
isotropic permeability influence on pseudo-1D flow from neighbouring gates cannot be ignored. The
required correction is described in Appendix B.

The BI algorithm used in step 3a was implemented in C and built into a DLL library for linking to an
external program. The implementation was optimised to run REnKA in 1-2 seconds depending on the
amount of data and precision of required predictions. Moreover, a simplified deterministic version of step
3a with an execution time of 0.25s was implemented as well. The deterministic algorithm assumed that the
permeability and porosity are constant (but not known) and can be computed from single measurement
of the flow front position and pressure history at a particular time step. These two implementations are
sufficiently fast to be used in a realistic ACS.

3. Validation with virtual experiments

In this section we describe virtual experiments for testing the ACS from Section 2. Note that we used
a similar setting for one of the virtual experiments in Part I of the report [8].
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3.1. Virtual experiment setup

A number of tests of the proposed ACS and its algorithm were performed using virtual experiments.
Flow through a porous reinforcement in a rectangular mould was simulated using a transient two-phase
flow model within ANSYS Fluent®. It was assumed that the permeability of the reinforcement does
not change with time (no compaction or decompaction, no change of properties with saturation) but
can vary from point to point. The viscosity of the fluid remained constant (i.e., the proccess is assumed
to be isothermal with no resin cure present). No-slip boundary conditions were imposed at the walls
of the cavity. Boundary conditions at the inlets and outlets are pressure boundary conditions. Finally,
the model was assumed to neglect any through-thickness effects which made it possible to use a 2D
implementation of the numerical algorithm. The permeability is assumed to stay constant within an
element of the mesh used in simulations but can vary in between the elements. The latter case is
implemented via user-defined functions (UDF) written in C which make it possible to extend ANSYS
Fluent® capabilities. The Fluent solver settings were: pressure-based solver; implicit VOF formulation;
SIMPLE algorithm for pressure-velocity coupling; spatial discretisation of gradient using Green-Gauss
Node Based gradient method; spatial discretisation of pressure and momentum using PRESTO! and
third-order MUSCL methods, discretisation of volume fraction using modified HRIC method. Under-
relaxation and convergence settings were kept to their default values.

A schematic drawing of a rectangular mould with three inlet gates and one outlet is shown in Fig. 1.
Six pressure sensors and seven equally spaced linear flow sensors are placed within the tool. Mesh
convergence studies were performed for a case with constant inlet pressure applied to all three gates. The
resulting mesh of the geometry is shown in Fig. 2.
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Figure 1: Geometry of the rectangular moulding tool and position of the sensors.

The design case for this configuration was assumed to be impregnation of an isotropic reinforcement
with no variability or defects. The nominal porosity of the preform is 0.71 and its permeability is assumed
to be isotropic and equal to 5.66 x 10710 m?2. The fluid viscosity is 0.106 Pa-s. The predicted filling time
for the design configuration was 107s at constant injection pressure of 0.4 bar at all three inlets. Readings
from the flow front sensors, obtained during the design experiments, are used as an input for the control
algorithm (‘flow according to the design’).
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Figure 2: 2D mesh of the geometry of the rectangular moulding tool.

3.2. Controlled and uncontrolled fillings of preforms with defects

The control algorithm outlined in Section 2 was implemented via a user-defined function (UDF) which
is executed at the end of each computational time step. The UDF was linked to the DLL containing the
BI algorithm [7, 8]. Input of the control algorithm was the data from the flow according to the design’
and parameters of the nominal infusion such as nominal porosity, permeability and fluid viscosity. The
algorithm predicted pressure values at each of the gates which were then varied accordingly. Unlike the
complex priors used in [8], the prior used for the ACS was a Gaussian distribution of the permeability
and porosity around their nominal values.

The test case for the algorithm was a reinforcement with a severe defect (a rectangular hole of 4
cmx8 cm) located 3 cm away from the inlet as shown in Fig. 3. The defect was modelled as an area with
porosity equal to 0.99 and permeability equal to 3x10~7 m2. The permeability of the reinforcement was
modelled with local randomness of 10% in both permeability and porosity. The uncontrolled filling was
103 s which is not significantly different from the filling according to the design. The presence of the
defect distorted the flow front as shown in Fig. 4. The filling time in the controlled injection was within
108 s which is almost exactly as the design filling time.

Figure 3: Visualisation of defect in preform used in numerical simulations.

The effectiveness of the controlled filling can be measured via deviations of the actual flow front as
detected by the linear flow front sensors from the flow front according to the design Ay; = Ydesign,i —
Yactual,i- 1he controlled and uncontrolled filling were compared in terms of the maximum deviation of
the flow front from the design, i.e. maxz(]Ay;|). The comparisons are shown in Fig. 5. The controlled
filling was performed using deterministic and stochastic algorithms. While, eventually, the flow front was
within the tolerance (1 cm) of the flow according to the design, the uncontrolled filling was the slowest to
come within this tolerance. The stochastic control algorithm was fastest to reduce the difference between
the actual flow and the flow according to the design. However, it was observed that the control algorithms
have a higher peak of the maximum deviation when compared to the uncontrolled filling.
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Figure 4: Flow front in uncontrolled filling at 17 s (top) and 38 s (bottom) from the start of the experiment.
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Figure 5: Maximum (in amplitude) deviation of the flow front from the flow according to the design for three types of the
filling - uncontrolled, controlled with deterministic algorithm and controlled with stochastic algorithm. The negative sign
means that the actual front is ahead of the one according to the design and positive means the opposite.
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The results of the virtual experiments showed that the proposed ACS can be feasible not only in
terms of being able to control the filling but also in terms of its speed (the control algorithm takes just
up to 2 s to be executed) which makes it realistic to be extended to more complex scenarios.

4. Experimental validation

In this section, testing of the ACS in the lab is reported. In subsection 4.1, the experimental setting
is described, and in subsection 4.2, results of the tests are given.

4.1. Experimental setup

The rectangular mould with three inlet gates and one outlet, as shown in Fig. 1, was used in the
experiments. The mould consists of a steel bottom, a spacer frame of 2 mm thickness and a transparent
top. Each of the inlets is connected to a pressure tank fitted with an electro-pneumatic pressure regulator
which can be digitally controlled to change pressure in the tank. Non-return valves were fitted to each
of the inlet gates to prevent backflow of fluid when pressure at some of the gates is higher than pressure
at the other gates. Seven linear flow front sensors were embedded into the mould top. The flow front
sensors are based on measuring the resistance of the fluid between two wires [9, 10]. The flow sensors
and pressure regulators are connected to a NI-6229 data acquisition board which makes it possible to
collect the measurements as well as send the control signals to the pressure regulators. In addition to this
equipment, a digital video camera was used to record the mould filling for the further post-processing
and analysis of the process. An overall view of the experimental setup is shown in Fig. 6.

Figure 6: Overall view of the experimental rig for validation of the ACS concept.

The algorithm defined in Section 2 was programmed within the LabVIEW environment and linked
to the DLL containing the BI algorithm. The interface of the LabVIEW program included interactive
controls of the control algorithm such as time step.

It should be noted that, while in theory voltage readings from the linear flow front sensors can be
calibrated and converted to the flow front positions, it is a difficult task for an array of such sensors due
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to interactions between them. The measurement error of the linear sensors was estimated to be about
43 em which can be attributed to variations of resistivity of the oil and reinforcement. However, these
sensors are still used in this work due to the absence of any other cheap techniques which can collect
comparable amount of data. The readings are to be considered a characteristic voltage signature for
each injection experiment rather than a quantitative description of the flow front shape. Nonetheless,
the voltage signatures can still be used in ACS.

Continuous glass fibre random mat, Unifilo®, was used for the experiments. The areal weight of
the reinforcement was measured to be 259 g/m? with a standard deviation of 15 g/m?. The average
permeability at a porosity of 0.69 was measured to be 6.15 x 1071% m? with a variability of about 10%.
The injection fluid was engine oil at a constant temperature of 19.5°C with a viscosity of 0.106 Pa-s. The
experiments on a preform consisting of 7 layers of the material with no defects and overall porosity of
0.71 showed that the mould filling time is 132s at a constant pressure of 0.4 bar applied at all three inlet
gates.

It was found that the design simulations are close to that observed with a camera in the lab experiments
but do not match well the readings from the flow front sensors due to difficulty of their calibration.
Therefore, it was decided to use the results obtained from these experiments as ‘flow according to the
design’ input for the control algorithm.

4.2. Controlled and uncontrolled fillings of preforms with defects

Preforms with a severe defect, a rectangular hole of 4 cmx8 cm located 3 cm from the inlet side as
shown in Fig. 7, were used for the experiments. Stages of uncontrolled and controlled fillings of a preform
with the defect are shown in Fig. 8. It can be seen that the flow front is distorted by the defect but
becomes more or less straight towards the end. However, the filling time was 90 s which is 32% shorter
than for the preform with no defect. Controlled filling was performed for the preforms with the same
defect. The control time step was selected to be 2 s. The filling time for controlled filling was 116 s which
is within 10% of the design filling time.

R:' o I i

Figure 7: Overall view of the experimental rig for validation of the ACS concept.

Absence of the in-process pressure readings prevented the stochastic control from being robust. There-
fore, only the deterministic control algorithm was used in experiments. However, since the stochastic
filling performed better in the virtual experiments, it is expected that results of the deterministic control
algorithm will show the potential improvement of a controlled filling over uncontrolled filling.

The maximum deviation of the flow front from the flow according to the design is shown in Fig. 9. It
can be seen that the maximum deviation from the design is higher for the uncontrolled filling. A similar
peak of the maximum deviation for the controlled filling was observed in the virtual experiments. It also
should be noted that the error of the flow front sensors is about +3 ¢m which is comparable with the
maximum deviation shown in Fig. 9. It allows to speculate that more precise flow front sensors will help
to improve the controlled filling even further.
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Figure 8: Flow front in uncontrolled and controlled fillings at 18 s (top) and 38 s (bottom) from the start of the experiments.
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Figure 9: Flow front in uncontrolled and controlled fillings at 18 s (top) and 38 s (bottom) from the start of the experiments.
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5. Conclusions

A novel BI algorithm, capable of defect detection in 2D and 3D mould filling problems as shown in [§],
was employed for the purpose of control of mould filling processes. It was demonstrated that the proposed
implementation of the BI is fast enough for an ACS. The ACS was tested in a virtual environment and
showed its ability to control the mould filling time as well as the maximum deviation of the flow front
from the desired position.

The experimental validation of the concept showed that an ACS based on physics-based algorithms
is feasible in terms of both being sufficiently fast to work with small control step and being able to
control the filling time. The experimental validation was performed using only a deterministic algorithm.
However, since the stochastic algorithm performed better in the virtual experiment, it is expected that
it will also perform better than the deterministic control in a real experiment.

It was noted that excessive errors in the in-process measurement degrade the performance of the ACS
since the ACS heavily relies on these input data. This can be mitigated by improving accuracy of flow
front sensors and including additional data such as readings from pressure sensors.
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Appendix A. 1D solution

Consider the following 1D problem for resin injection [11, 12]:

d
——K(z)—p(t = 0,0 L(t), t>0 Al
. ()xp(,q;) » 0<z <L(t), t>0, (A1)
p(o,l’) = Do, TE (07 .’JZ*],
p(t,0) = pi(t), t >0,
d K(L(t)) d
—L = - —p(t, L), L(0) =
p(t, L(t)) = po, t>0.
Here the pressure on the inlet p;(t) is piecewise-constant left-continuous function on a grid with time
step h.
We have d
K(x)—np(t =C(t
() p(t,2) = C (1)
and

) =pio)+ 00 [ 25

which should satisfy the the initial condition and the boundary condition at the front L:

L(t)
p20) = pi(0+C0) [ s =

Hence ")
_ Po—pr
C(t) B fL(t) dz
0 K(z)
and thus

p(t,z) = pr(t) — (pr(t) —Po)m~

fO K(z)
Note that pressure does not depend on porosity explicitly.
We have
d ~K(L(t)) d CK(L(®)) C®)
a™ = ) @Y T ) Kam)
_ o ce pr(t) — po
AL (L) Jy Y 35
Hence
L(t) Yz t
/0 %(y)/o mdyz/o (p1(s) — po) ds.
Let
Y dz r
F(y) = . K@) G(x) —/0 #(y) F(y)dy
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Then ,
20 =67 ([ o) - mas)
L(1) = @, (A.2)

47m@wwmwzeu» (A.3)

Suppose we observed at time ¢; that the front is at position z; and we want to find p; so that the front
will be at x;41 at time t;,11 = t; + h. We have

It

[ o166 -pyds = 6w
and
/t jm (pr(s) —po)ds = Glain1) —Glz;) = /w “ () F(y)dy
= (@1 — 33) 20(23) F (@) + O (i1 — 25)°

Since (recall that pr(s) = pr(t;) on [ti,tir1])

/ - (p1(s) — po) ds = (p1(t:) — po) b,

ti

(zi1 — ) 2e(25) F(25)
}

: (A.4)

p1(ti) = po +

Note that K (z) here is hydraulic conductivity which is equal to permeability divided by viscosity.

Appendix B. Correction for neighbouring gates

This appendix gives correction of 1D flow which improve the control. To this end, introduce a notion of
effective pressure % at the gate 4, which includes a correction to the actual pressure at this gate p}. This
notion allows us to decouple estimation of permeability and porosity on different ‘lines’ corresponding to
different gates.

Consider the following correction:

, oy . Ti— A ) ;
Py = mln(pl + aij min ((J—”)-i_‘ 1> (pjf — pI)+ (Bl)
Bij Asj
— A ) S
4+ min (u, 1> (pk - P})+»III&X(PZJ7P§7PIIC)),
Bik Dk
( 7é jv ‘775 k? Z7é ka iajak: 172737

where z; is a position of the front relative to the gate j, A;; are distances between the gates i and j, ay;
and f3;; are tuning parameters. The parameters 3, (can be replaced by a single parameter 3) are related
to at what point we think the influence of the other gate is maximal and then not change after that). To
start with, we can assume that g;, = 8 = 1.

The proposed correction has properites consistent with physics of the flow:

e at the start, when z; ~ 0, we have p; ~ pi;

e p} are increasing with time as z; are increasing;
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e 7 is bounded by max(p}, p}, pk);

e with time influence of pressure on a gate j on the flow coming from a gate i, i # j, is increasing
until maximum possible pressure is reached.

Let us discuss implementation of (B.1). The use in REnKA is straightforward: just p;(¢) need to be
replaced by the corresponding 5 (¢). The modification to the control part requires further work. First,
we substitute p¢(t) instead of pr(t) in the left-hand side of (A.4), i.e., via our control procedure we now
find values of the effective pressure p'(t) on the three gates instead of the actual new pressure p%(t) on
the gates. Hence, we need to find the three actual new pressure values p'(¢) via the computed three
effective pressure values p%(t). The easiest is to find p%(t) by using simple iteration. Introduce

\Pi(p},p?,p?) = pz(t) — min(e; min (%—Am» 1> (r7 — )+
1j g
: rx — Dk i i i i
+Q;) Mmin <%7 1) (pk - p[)-'r?ma‘X(O?p% _vaplIC - pI))7
Bik Aik

L F g, JFk iFk 4, k=1,2,3.

Set op} = pi(t — h), i.e. the pressure on the gates from the previous time step and define the interative
process:

ety = Wil wpr, wpf, kp7)s = 12,3, (B.2)
k = 0,1,....,k—1.
For practical purposes, it is usually sufficient to have k = 2 or 3. Finally, put
i

pi(t) = p}

and check that pi(t) > 0 (if not, close the gate) and that it is not greater than the maximum pressure
we can put on the gate (if greater, put the maximum pressure on that gate).
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