CIMComp EPSRC **Future Composites** Manufacturing Research Hub

Wrinkle Formation Characterisation During the Forming of Non-Crimp Fabrics

Jin Zhou jz465@cam.ac.uk , Verner Viisainen jvv21@cam.ac.uk Academic Supervisor: Prof Michael Sutcliffe <u>mpfs@eng.cam.ac.uk</u>

Aims / Objectives

Experimental Work

1. To experimentally investigate the **relationship** between the **fibre strains** and wrinkle formation during the forming of a biaxial NCF with a pillar stitch pattern. 2. To develop a **FE model** that can **predict the fibre strains** in the NCF during forming and validate this model using experimental data.

3. To use experimental data and the FE model to **develop a Wrinkling Failure Limit Diagram (WFLD)** showing the failure strains at which wrinkles start to develop during

Methodology

Figure 1: Experimental setup

• NCF sample (Hexcel FCIM359) is sprayed with graphite powder and flaw developer spray to obtain suitable **speckle** pattern [1].

- The **principal strains** during forming over hemispherical punch are obtained using **Aramis 3D DIC** system and custom built forming rig.
- Forming tests are repeated for different clamping conditions and sample geometries.
- **Process parameters**: Punch Speed=1mm/s, Maximum Punch Displacement (PD)=75mm, Blank Holder Force (BHF)=175N

Figure 5: Wrinkle Amplitude and Shear Angle

at a) PD =17mm and b) PD=22mm

- A phenomenological Abaqus ***Fabric material model** is used
- Non-linear anisotropic behavior with two fibre orientations.
- **Material Input Data**: Experimental tensile, shear & compression data. Shear data taken from [2].
- **Element type**: Membrane elements (M3D4R)
- **Mesh size**: Square elements of length 3-5mm
- **FE output**: Strains in fibre directions (E11, E22) & shear strain (EFABRIC12)
- **Geometry**: Outer Diameter=380mm, Inner Diameter=287mm, Punch Radius= 75mm
- **Boundary Conditions**: Constant Blank Holder Force (BHF=175N) and Coefficient of Friction (μ =0.4)

Modelling

Work

Figure 3: FE Model Geometry

forming.

Results

a

b)

- Experimental conditions are replicated in the model and **predicted** shear angles compared against experimental results.
 - Model is then altered to

Wrinkle amplitudes calculated by subtracting the smoothed displacement surface from the actual fabric surface.

a) PD =17mm and b) PD=22mm

consider alternative sample geometries.

EFABRIC, EFABRIC1 (Avg: 75%)

Figure 7: Predicted Shear Angle for BHF=175N at a) PD =17mm and b) PD=22mm (150mm wide sample)

Key Findings

- **Increasing BHF** significantly **reduces** the amplitude of **wrinkles** produced.
- For uniformly applied BHF, there is **a general correlation** between the locations of wrinkles and maximum shear angles.
- For non-uniformly applied BHF and non-circular geometry, there is less agreement between location of wrinkles and maximum shear angles, suggesting that **another mechanism** other than shear lock up, is causing those wrinkles.
- It is hypothesised that **compressive radial strains** that are inherent to the forming process contribute to the onset of these wrinkles.

Research Impact

- The shear angle distribution predicted by the model (Figure 6) **shows good correlation** with experimental results (Figure 5) for a circular sample under the same conditions.
- The validated model can thus be used to obtain strain distributions for alternative sample geometries and punch shapes.
- Using the strain distributions, the **wrinkling patterns can be inferred** given the general correlation between strains and wrinkles.
- Thus FE model can be used to interpolate and extrapolate **a WFLD** from a limited set of tests for a particular NCF.

References

- The experimental rig enables for the wrinkle development and surface strains to be **tracked continuously** during forming allowing for improved understanding of mechanisms involved.
- The **forming limit diagram** provides a methodology to relate a

[1] P. Harrison et al. Int. J. Solids Struct., vol. 0, pp. 1–17, 2016. [2] S. Chen et al. *Compos. Part A Appl. Sci. Manuf.*, vol. 91, pp. 156–167, 2016.

limited set of forming experiments performed with a given material to **forming of complex parts** using the same material.

Understanding of wrinkle formation and a way of determining wrinkle formation allows **development of a standardised way of** testing and representing fabric behavior, which can be by endusers in design of components and manufacturing routes.

Acknowledgements

This work was extensively supported by our industrial partners Dassault Systèmes and Hexcel.

This work was supported by the EPSRC through the Future Composites Manufacturing Research Hub [EP/P006701/1]

Engineering and Physical Sciences Research Council

Imperial College London

